Understanding the Role of Information in the Control of Cyber-Physical Systems Bryce L. Ferguson

PhD Student, Department of Electrical and Computer Engineering, University of California, Santa Barbara

Information *in* control

Distributed Control with Limited Information

[CDC21,DGAA,CDC22]

Local Utility Design with Defective Agents

Defective Agents

Group Performance

solution to a linear program

Optimal, robust local utility rules as the

Characterization of trade-off between

nominal and robust performance

 $\max_{a_1 \in \mathcal{A}_1} U_1(a_1, \mathbf{a_{-1}}) \qquad \max_{a_n \in \mathcal{A}_n} U_n(a_n, \mathbf{a_{-n}})$

Results:

- Agents decide resources/tasks locally Unknown set of agents is defective
 - **Objective**: Design local objectives for robust performance guarantees

Distributed Resource Allocation Problem

Performance guarantee of optimal design

Nominal Performance

Insights: Uncertainty about hazards requires redesign of existing control rules and induces trade-off between robust and nominal performance.

Robust Incentive Mechanism Design

[CDC19, TCNS, ACC20, TAC, ACC21, CDC21, LCSS, TEAC]

Incentive Design

Designing Incentives under Uncertainty

- Self-interested users route themselves through congestible network
- Network congestion can be improved with appropriate incentives
- Network structure and users' response to incentives may be unknown

Objective: Design robust incentives with limited information.

Results:

Insights: Characterization of the value of different pieces of information and the effectiveness of different incentive types.

Research Interests and Vision

My research studies how we can utilize information in the control of large-scale cyber-physical systems. I study this in two paradigms:

The role of information at the *design phase*

Information's power to influence behavior

Distributed Decision Making

Local decision making in large-scale systems

- Performance a function of collective behavior
- Susceptible to *sub-system failures*?
- Local information affects overall performance

Cyber Physical Human Systems

Self-interested system users

- Performance a function of collective behavior
- Cannot directly control, influence in other ways?
- Information about *user response* affects capabilities

Social-Centered Systems

Decisions based on individual beliefs

- Performance a function of collective behavior
- Users' prior knowledge affect behavior
- Beliefs can be changed by *signaling* information

Acknowledgements

Collaborators: Jason R. Marden, Philip N. Brown, Rahul Chandan, Dario Paccagnan, Yixiao (Rey) Yue, Austin K. Chen, Daigo Shishika, Michael Dorothy Vijay Kumar, George J. Pappas

Research supported in part by: Army Research Office, Office of Naval Research, Air Force Office of Scientific Research, National Science Foundation.

Information as control

Strategic Information Signaling

Revealing Information to Alter Users' Beliefs

Results: (in Bayesian Congestion Games)

Incentives *robustify* signaling

Solve for optimal signals

(can help *or* hurt)

Bounds on benefit of signaling

System Behavior

- Human system with unknown state
- Belief of state affects system behavior (e.g., driving patterns and traffic)
- System operator can signal information to alter beliefs and improve performance

Objective: Design signaling policy that improves system behavior

Insights: Information signaling has the capability to help or hurt system performance, but incentives make revealing information only help.

Competing Information Providers

Information Senders with Different Objectives

Posterior = $\mathbb{P}[\text{state}|\text{signals}]$

- Social system that depends on user action
- Users make decisions without exact knowledge of the system state
- Senders/advertisers can signal information to the users
- Each sender has their own objective

Objective: Understand the interactions between *multiple* information senders

Directions:

- Characterize behavior in sender competition
- Identify opportunities to thwart malicious 'information' providers.

Users' inferencing ability: Bayesian or otherwise?

More senders can lead to polarization or greater uncertainty.